

High-Throughput Characterization of Semiconductor Materials by Computer Vision and Hyperspectral Imaging

The research team "Materials Discovery" (part of High-Throughput Materials and Devices (HTMD) group in Helmholtz Institute Erlangen-Nuremberg for Renewable Energies - HIERN) specializes in robot-assisted high-throughput screening of novel materials for energy applications, including:

- Lead-free halide perovskites and perovskite-inspired materials
- Sustainable semiconductor quantum dots
- Multi- and single-layer 2D materials

We offer the opportunity for a **Master's thesis** on a topic related to our general strategy of the development of a <u>self-driving chemical lab for</u> the autonomous discovery of energy materials.

The M.Sc. project will focus on one of the above material classes and one of the specific topics related to the general aim, including:

- implementation of computer vision algorithms for high-throughput characterization of materials and processes
- application of hyperspectral imaging for high-throughput characterization of optoelectronic semiconductor materials
- · development of machine-learning-based algorithms for analysis of spectral data

Qualifications:

- Knowledge of chemistry and chemical lab operation
- Basic knowledge of methods of spectral characterization (UV-Vis, PL, vibrational spectroscopy)
- Experience with programming (Python, C#, or platforms like Mathlab) and machine learning
- Ambition, motivation, capability of self-driven work, resistance to challenges

Contact:

Dr. Oleksandr Stroyuk;

Immerwahrstr. 2, 91058 Erlangen

o.stroyuk@fz-juelich.de

+49-9131-12538305

Publications on the state-of-the-art:

- (i) M. Reid et al., Parallel and High Throughput Reaction Monitoring with Computer Vision, *Angew. Chem. Int. Ed.* 2025, 10.1002/anie.202413395
- (ii) T. Buonassisi, et al., High-throughput micro-scale bandgap mapping for perovskite-inspired materials with complex composition space, **Nature Commun.**, 2025, 10.1038/s41467-025-62774-y

Recent publications of the group:

- (i) O. Stroyuk, et al., *Materials Advances*, 2025, 6, 4847.
- (ii) O. Stroyuk, et al., *Nanoscale*, 2025, 17, 16873.
- (iii) O. Stroyuk, et al., *Chem. Commun.*, 2025, 61, 455.
- (iv) O. Stroyuk, et al., *J. Mater. Chem. C*, 2024, 12, 8705.
- (v) O. Stroyuk, et al., *Adv. Func. Mater.*, 2024, 2400453.